MathScore EduFighter is one of the best math games on the Internet today. You can start playing for free!

## California Math Standards - 8th Grade

MathScore aligns to the California Math Standards for 8th Grade. The standards appear below along with the MathScore topics that match. If you click on a topic name, you will see sample problems at varying degrees of difficulty that MathScore generated. When students use our program, the difficulty of the problems will automatically adapt based on individual performance, resulting in not only true differentiated instruction, but a challenging game-like experience.

View the California Math Standards at other levels.

## Algebra and Functions

1.0 Students identify and use the arithmetic properties of subsets of integers and rational, irrational, and real numbers, including closure properties for the four basic arithmetic operations where applicable:
1.1 Students use properties of numbers to demonstrate whether assertions are true or false.
2.0 Students understand and use such operations as taking the opposite, finding the reciprocal, taking a root, and raising to a fractional power. They understand and use the rules of exponents. (Negative Exponents Of Fractional Bases , Multiplying and Dividing Exponent Expressions , Exponent Rules For Fractions , Roots Of Exponential Expressions , Simplifying Radical Expressions , Adding and Subtracting Radical Expressions , Multiplying and Dividing Radical Expressions )
3.0 Students solve equations and inequalities involving absolute values. (Absolute Value Equations )
4.0 Students simplify expressions before solving linear equations and inequalities in one variable, such as 3(2x-5) + 4(x-2) = 12. (Single Variable Equations 3 )
5.0 Students solve multistep problems, including word problems, involving linear equations and linear inequalities in one variable and provide justification for each step. (Single Variable Equations 3 , Single Variable Inequalities , Integer Word Problems )
6.0 Students graph a linear equation and compute the x- and y- intercepts (e.g., graph 2x + 6y = 4). They are also able to sketch the region defined by linear inequality (e.g., they sketch the region defined by 2x + 6y < 4). (Graphs to Linear Inequalities )
7.0 Students verify that a point lies on a line, given an equation of the line. Students are able to derive linear equations by using the point-slope formula. (Graphs to Linear Equations , Graphs to Linear Equations 2 , Applied Linear Equations 1 )
8.0 Students understand the concepts of parallel lines and perpendicular lines and how those slopes are related. Students are able to find the equation of a line perpendicular to a given line that passes through a given point. (Applied Linear Equations 2 )
9.0 Students solve a system of two linear equations in two variables algebraically and are able to interpret the answer graphically. Students are able to solve a system of two linear inequalities in two variables and to sketch the solution sets. (System of Equations Substitution , System of Equations Addition , Age Problems )
10.0 Students add, subtract, multiply, and divide monomials and polynomials. Students solve multistep problems, including word problems, by using these techniques. (Simplifying Algebraic Expressions , Foil Method , Integer Word Problems )
11.0 Students apply basic factoring techniques to second-and simple third-degree polynomials. These techniques include finding a common factor for all terms in a polynomial, recognizing the difference of two squares, and recognizing perfect squares of binomials. (Trinomial Factoring )
12.0 Students simplify fractions with polynomials in the numerator and denominator by factoring both and reducing them to the lowest terms. (Binomial Fraction Simplification , Polynomial Fraction Simplification )
13.0 Students add, subtract, multiply, and divide rational expressions and functions. Students solve both computationally and conceptually challenging problems by using these techniques.
14.0 Students solve a quadratic equation by factoring or completing the square. (Quadratic Zero Equations , Quadratic X-Intercepts , Quadratic Formula , Integer Word Problems )
15.0 Students apply algebraic techniques to solve rate problems, work problems, and percent mixture problems. (Train Problems , Mixture Word Problems , Work Word Problems )
16.0 Students understand the concepts of a relation and a function, determine whether a given relation defines a function, and give pertinent information about given relations and functions.
17.0 Students determine the domain of independent variables and the range of dependent variables defined by a graph, a set of ordered pairs, or a symbolic expression. (Domain and Range )
18.0 Students determine whether a relation defined by a graph, a set of ordered pairs, or a symbolic expression is a function and justify the conclusion.
19.0 Students know the quadratic formula and are familiar with its proof by completing the square.
20.0 Students use the quadratic formula to find the roots of a second-degree polynomial and to solve quadratic equations. (Quadratic Formula , Quadratic X-Intercepts , Quadratic Zero Equations )
21.0 Students graph quadratic functions and know that their roots are the x- intercepts.
22.0 Students use the quadratic formula or factoring techniques or both to determine whether the graph of a quadratic function will intersect the x-axis in zero, one, or two points. (Quadratic X-Intercepts , Quadratic Zero Equations , Quadratic Formula )
23.0 Students apply quadratic equations to physical problems, such as the motion of an object under the force of gravity.
24.0 Students use and know simple aspects of a logical argument:
24.1 Students explain the difference between inductive and deductive reasoning and identify and provide examples of each.
24.2 Students identify the hypothesis and conclusion in logical deduction.
24.3 Students use counterexamples to show that an assertion is false and recognize that a single counterexample is sufficient to refute an assertion.
25.0 Students use properties of the number system to judge the validity of results, to justify each step of a procedure, and to prove or disprove statements:
25.1 Students use properties of numbers to construct simple, valid arguments (direct and indirect) for, or formulate counterexamples to, claimed assertions.
25.2 Students judge the validity of an argument according to whether the properties of the real number system and the order of operations have been applied correctly at each step.
25.3 Given a specific algebraic statement involving linear, quadratic, or absolute value expressions or equations or inequalities, students determine whether the statement is true sometimes, always, or never.